Орбита телевидения » Статьи » Спутниковое телевидение » Стандарты сигналов спутникового ТВ вещания

 
Раздел форума Название темы Автор топика Ответов Посл. ответ
Плейлисты IP-телевидения Альтернативные плейлисты Andron1975 725 (267907) Вчера, 21:00
Плейлисты IP-телевидения Премиум плейлисты IPTV (только для подде... Andron1975 511 (161677) 22:28, 25.11.2016
МТС ТВ МТС начинает предоставлять услуги спутни... Tanker 9 (8519) 19:54, 18.11.2016
Плейлисты IP-телевидения Общие вопросы по порталу, плейлистах и I... Andron1975 96 (46035) 16:32, 10.11.2016
Обсуждение систем кодирования Conax запускает бескарточную систему на ... Tanker 1 (1816) 20:32, 13.10.2016
Samsung, LG Smart TV, nStreamVOD IPTV на телевизорах (Smart TV) wallas 85 (154093) 13:09, 21.07.2016
Триколор ТВ Внимание! Новости от Триколор ТВ. Триколор ТВ в Керчи 385 (124553) 22:39, 06.07.2016
Спутниковые новости О запуске украинского спутника "Либ... fenix 27 (7825) 14:18, 12.06.2016

Стандарты сигналов спутникового ТВ вещания

Автор: admin от 25-10-2012, 16:21, посмотрело: 7739

0
Стандартом ТВ сигнала называют совокупность определяющих его основных характеристик, таких как способ разложения изображения, число строк и кадров, длительность и форма синхронизирующих и гасящих импульсов, полярность сигнала, разнос между несущими частотами изображения и звукового сопровождения и метод модуляции последней, параметры предыскажаюшей цепи звукового сигнала и др. Для цветного телевидения добавляется метод передачи сигналов цветности совместно с сигналом яркости. В спутниковом вещании традиционно используются стандарты формирования ТВ сигнала, сложившиеся в наземном телевизионном вещании. Для черно-белого телевидения существует 10 стандартов, которые принято обозначать латинскими буквами В, D, G, Н, I, К, К1, L, М, N.

По способу передачи сигналов цветности различают три системы цветного телевидения: SЕСАМ, NTSC и РАL. Каждая из трех систем может применяться с любым из 10 стандартов черно-белого ТВ вещания, давая 30 возможных комбинаций. На практике применяются девять разновидностей РАL, шесть - SЕСАМ и один стандарт из группы NТSС.

Системы SЕСАМ, NTSC и РАL
были разработаны для наземных ТВ сетей, использующих амплитудную модуляцию (AM) несущей изображения, и не очень пригодны для спутниковых каналов, где основной является частотная модуляция (ЧМ). При прохождении ЧМ сигнала через тракты с неравномерной амплитудной и нелинейной фазовой характеристикой возникают перекрестные искажения сигналов яркости и цветности ухудшающие качество изображения. К тому же из-за треугольного спектра демодулнрованного шума при ЧМ сигналы цветности оказываются в области повышенной спектральной плотности мощности шума, что снижает помехоустойчивость приема этих сигналов

Во многих странах проводились поиски новых методов формирования ТВ сигнала, свободных от указанных недостатков. Наилучших результатов ожидали от цифровых методов передачи. Однако для передачи цветного ТВ изображения с высоким качеством скорость цифрового потока должна составлять более 200 Мбит/с, что значительно превышает пропускную способность типового ствола спутникового ретранслятора с полосой пропускания 27...36 МГц. В качестве компромисса для первого поколения европейских систем непосредственного телевизионного вещания был разработан и принят комбинированный цифроаналоговый стандарт с поочередной передачей на периоде активной части строки сжатых во времени аналоговых сигналов яркости и цветности, получивший название МАС (Multiplexing Analogue Components - уплотнение аналоговых компонент). Сигналы звукового сопровождения, синхронизации, служебная и дополнительная информация передаются в цифровой форме. В зависимости от выбранного способа передачи звука и данных различают стандарты В-МАС, С-МАС, D- и D2-МАС. Подробнее об этом будет рассказано ниже.

В конце 80-х гг. был создан алгоритм цифрового сжатия, позволявший передать высококачественное изображение со скоростью 7...9 Мбит/с, изображение вещательного качества - со скоростью 3,5...5,5 Мбит/с и кинофильм (совокупность неподвижных изображений) со скоростью не более 1,5 Мбит/с. На основе этого алгоритма Международная организация стандартизации приняла два стандарта обработки ТВ изображения: МРЕG1 для телевидения с невысокой разрешающей способностью и прогрессивной разверткой (компакт-диски, компьютерные игры, мультимедиа) и МРЕG2 для вещательного телевидения с чересстрочной разверткой. Дальнейшим развитием МРЕG2 стал европейский стандарт цифрового ТВ вещания (DVB), содержащий нормы на параметры модуляции, кодирования и передачи по каналам связи.

Аналоговый метод передачи с ЧМ

Частотная модуляция требует по сравнению с амплитудной модуляцией, используемой в наземном вещании, существенно меньшей мощности передатчика, что особенно важно для спутниковых систем Преимуществами ЧМ являются также невысокие требования к линейности амплитудной характеристики тракта и возможность работы выходного каскада спутникового передатчика в режиме насыщения, в котором достигается высокий КПД.

При передаче ЧМ девиация частоты несущей выбирается исходя из полосы пропускания ВЧ тракта таким образом, чтобы избежать искажений передаваемого сигнала, связанных с отсечением части его спектра. Упоминавшиеся выше перекрестные помехи проявляются в искажениях типа "дифференциальное усиление" и "дифференциальная фаза". Для уменьшения этих искажений применяется рекомендованная МККР линейная обработка.

Наряду с линейными предыскажениями сигнала изображения в спутниковых системах иногда, применяют нелинейную обработку, заключающуюся в ограничении размаха предыскаженного сигнала за счет отсечения коротких выбросов, соответствующих крутым фронтам исходного сигнала. При сигнале SECAM допустимо ограничение на 2...3 дБ, на такое же значение можно увеличить девиацию частоты и отношение сигнал/шум на выходе канала. Искажения сигнала получаются незначительными даже при отсутствии нелинейного восстановителя на приеме. Описанный метод использован в отечественной системе ТВ вещания "Москва".

Еще один вид обработки, нашедший применение только в спутниковых системах вещания, - введение в состав ТВ сигнала на передающей стороне дополнительного низкочастотного модулирующего сигнала, обеспечивающего более равномерное рассеяние (дисперсию) энергии ТВ сигнала в полосе частот ствола с целью уменьшения помех другим системам связи, в первую очередь радиорелейным линиям. В связи с совместным использованием некоторых диапазонов частот (например, 4 и 11 ГГц) спутниковыми и радиорелейными системами в Регламенте радиосвязи установлены предельные нормы спектральной плотности потока мощности спутникового сигнала на единицу полосы (обычно 4 кГц) для разных углов прихода сигнала. При неблагоприятных сюжетах изображение (равномерно освещенное поле) почти вся мощность сигнала может сосредоточиться в узкой полосе частот и привести к многократному превышению указанной нормы. Добавление сигнала пилообразной или треугольной формы частотой от единиц герц до десятков килогерц позволяет добиться эффективного рассеяния независимо от сюжета. Девиация несущей сигналом дисперсии зависит от требуемой степени рассеяния и выбирается равной от 600 кГц (рекомендация МККР для всех спутниковых ТВ систем) до 4 МГц (в системе "Москва").

Исключение сигнала дисперсии на приеме достигается применением схем фиксации уровня видеосигнала: при девиации более 1 МГц дополнительно используются специальные следящие устройства.Сигнал звукового сопровождения телевидения в традиционных системах с ЧМ передается обычно совместно с сигналом изображения на поднесущей частоте, расположенной выше его спектра. Для достижения необходимой помехозащищенности передача осуществляется методом частотной модуляции поднесущей, причем девиацию частоты поднесущей выбирают, как правило, большей, чем в наземном телевидении - до 100 и даже 150 кГц. Значение поднесущей также выше и составляет 7,0...7,5 МГц при полосе видеосигнала 6 МГц, 5,8...6,8 МГц при полосе 5 МГц и 5...6 МГц при полосе 4,2 МГц, что позволяет уменьшить переходные помехи из канала изображения в канал звукового сопровождения и облегчить требования к фильтрации сигналов.

Для повышения помехоустойчивости передачи звуковых сигналов, как и в наземном телевидении, применяют частотные предыскажения - подъем верхних частот передаваемого сообщения. Коэффициент передачи предыскажаюшей цепи описывается выражением:

K(f) = 10lg [1 + 2пfт)2]

При необходимости передачи совместно с сигналом изображения более чем одного звукового сигнала (звуковое вещание, звуковое сопровождение на иностранных языках, стереозвук) используется несколько поднесущпх частот, расположенных выше спектра видеосигнала. Их число ограничено возникновением перекрестных помех и ухудшением качества ТВ изображения из-за уменьшения доли девиации несущей, приходящейся на видеосигнал. Практически с удовлетворительным качеством удается передать два-четыре дополнительных сигнала. Например, в спутниковых ТВ каналах, организованных через европейские ИСЗ Eutelsat II и Astra наряду с основным каналом звукового сопровождения сформированы еще до четырех высококачественных звуковых каналов, используемых для передачи монофонических или стереофонических программ. Передача ведется методом ЧМ на поднесущих частотах 7,02, 7,20, 7,38, 7,56 МГц звуковой сигнал подвергается адаптивным предыскажениям и компандированию (система Wegener Panda 1).

Компандирование применяется для повышения помехоустойчивости передачи звуковых сигналов. Оно подразумевает сжатие динамического диапазона передаваемого сигнала в соответствии с изменением огибающей звукового сигнала и восстановление исходного динамического диапазона на приеме. Различают "управляемые" компандеры, в которых информация об исходном динамическом диапазоне передается в отдельном канале управления, и "неуправляемые", в которых эта информация содержится в передаваемом сигнале.

Выигрыш в помехозащищенности благодаря компандированию достигает в среднем 12...13 дБ при наличии сигнала и по 20 дБ паузе сигнала. Управляемый компандер применялся в отечественных системах "Экран" и "Москва", неуправляемый - в системе "Москва - Глобальная".

Более эффективным энергетически и свободным от перекрестных помех способом передачи нескольких звуковых сигналов является передача на поднесущей в дискретной форме. Сигналы отдельных каналов преобразуются в цифровую форму и объединяются (мультиплексируются) в общий цифровой поток, который модулирует по фазе поднесущую частоту, расположенную выше спектра видеосигнала. Этот способ, например, используется в японской системе НТВ ВS-3. Поднесущая 5,73 МГц модулируется цифровым потоком со скоростью 2,048 Мбит/с, содержащим ИКМ звуковые сигналы, импульсы коррекции ошибок, контрольные импульсы. В системе образуются либо четыре звуковых канала с полосой 15 кГц, либо два канала очень высокого (студийного) качества с полосой 20 кГц.

Давно известен и применяется способ передачи звуковых сигналов в спектре видеосигнала с разделением их во времени - в интервале обратного хода луча или в свободных строках. Рассматриваемый способ применялся в системе "Орбита", в которой с помощью широтно-импульсной модуляции обеспечивалось формирование одного канала с полосой 10 кГц или двух каналов с полосой 6 кГц. Современный уровень дискретной схемотехники позволяет существенно увеличить пропускную способность метода. Эти возможности реализованы в стандарте МАС.

ТВ сигнал с временным разделением компонентов

В системах типа МАС аналоговые сигналы яркости и цветности сжимаются во времени и передаются поочередно, что позволяет избежать перекрестных искажений сигналов яркости и цветности, снизить шумы в канале цветности благодаря переводу его в область низких частот, повысить разрешающую способность изображения за счет более широкой полосы частот сигналов яркости и цветности. Сжатие аналогового сигнала осуществляется стробированием сигнала с некоторой тактовой частотой, преобразованием отсчетов в цифровую форму, накоплением их в буферной памяти, ускоренным считыванием с новой, более высокой тактовой частотой и обратным преобразованием в аналоговую форму.

Звуковые сигналы преобразуются в цифровую форму и передаются в интервале обратного хода луча. Высшая частота в спектре звукового сигнала составляет 15 кГц частота стробирования выбрана равной 32 кГц. В зависимости от требований к качеству звучания используется линейное аналого-цифровое преобразование с точностью 14 бит/отсчет либо почти мгновенное компандирование с точностью 10 бит/отсчет, помехоустойчивое двухуровневое кодирование обеспечивает эффективную защиту от ошибок. Скорость цифрового потока в разных вариантах составляет от 352 до 608 Кбит/с.

Для каналов с цифровой передачей звука рекомендовано использовать предыскажающие контуры с характеристикой, соответствующей Рек. J17 МККТТ, либо так называемой характеристикой "50/15 мкс". Считается, что предыскажения уменьшают субъективное восприятие шумов квантования и предотвращают ухудшение качества при низких отношениях сигнал/шум.

Сформированные тем или иным способом цифровые сигналы отдельных каналов, импульсы синхронизации, коррекции ошибок и другие дискретные сигналы сводятся в общий цифровой поток. Передача этого цифрового потока совместно с сигналом изображения в системах типа МАС может осуществляться одним из трех способов:
с разделением по частоте, как в японской системе ВS-3 (система А);
с разделением по времени на видеочастоте (система В);
с разделением по времени на несущей частоте (система С).

Первая буква, входящая в полное обозначение стандарта семейства МАС (например, С-МАС/packet), как раз и означает способ передачи цифрового сигнала.

В системе А, как уже отмечалось выше, без заметного ухудшения качества изображения удается передать цифровой поток со скоростью 1,5…2 Мбит/с, что соответствует трем-четырем высококачественным каналам. В системе В скорость передачи не превышает 1,5...1,6 Мбит/с, что позволяет организовать два четыре канала с ИКМ или до шести каналов с АДМ. Наилучшие результаты получаются в системе С при фазовой манипуляции несущей частоты ч интервале гасящего импульса. Средняя скорость передачи в этом случае достигает 3 Мбит/с, а пропускная способность в зависимости от способа кодирования составляет от четырех до восьми звуковых программ. Объединение цифровых потоков отдельных каналов в стандарте С-МАС осуществляется методом пакетного мультиплексирования, что отражено в полном названии стандарта: С-МАС/packet". Пакет представляет собой набор данных объемом 751 бит и содержит головную часть с адресом пакета (23 бита) и область полезных данных (91 байт).

Для сопряжения по полосе частот видеосигнала с сетями кабельного телевидения разработаны стандарты D-МАС и D2-МАС В стандарте D-МАС/packet" бинарный (двоичный) цифровой поток преобразуется в дуобинарный (трехуровневый), в котором, логическому 0 соответствует импульс нулевой амплитуды, а логической 1 - импульс положительной или отрицательной полярности Объединение видеосигнала и дискретной последовательности осуществляется по видеочастоте, как в системах типа В. Дальнейшее снижение занимаемой цифровым сигналом полосы частот в стандарте D2-МАС достигается снижением вдвое скорости цифрового потока н соответственно пропускной способности до двух-четырех туковых сигналов вместо четырех-восьми в D-МАС.

Появление в последнее время стандартов цифрового сжатия привело к тому, что стандарт D/D2-МAC/packet утратил свою роль преимущественного метода передачи в диапазоне 11,7...12,5 ГГц и вступает ее цифровым методам. В этом стандарте пока еще работают несколько спутниковых систем Франции и Скандинавских стран, передаются отдельные программы Голландии Бельгии. Великобритании, но область его применения заметно сокращается.

Передача ТВ сигналов в цифровой форме со сжатием

Создание эффективного алгоритма цифровой обработки ТВ сигнала стало возможным на основе достижений теории зрения и техники сверхбольших интегральных схем (СБИС). Алгоритм, положенный в основу стандартов MPEG включает определенный базовый набор последовательных процедур.

В качестве исходного используется компонентный ТВ сигнал RGB, затем он матрицируется в сигнал YUV; дискретизация, как и в цифровом стандарте "4:2:2" осуществляется с тактовыми частотами 13,5 МГц для сигнала яркости и 6,76 МГц для цветоразностных сигналов. На этапе предварительной обработки удаляется информация, затрудняющая кодирование, но несущественная с точки зрения качества изображения Обычно используется комбинация пространственной и временной нелинейной фильтрации.

Основная компрессия достигается благодаря устранению избыточности ТВ сигнала. Различают три вида избыточности - временную (два последовательных кадра изображения мало отличаются один от другого), пространственную (значительную часть изображения составляют однотонные одинаково окрашенные участки) и амплитудную (чувствительность глаза неодинакова к светлым и темным элементам изображения).

Временная избыточность устраняется передачей вместо кадра изображения его отличий от предыдущего кадра. Простое вычитание кадров было значительно усовершенствовано, когда заметили, что большая часть изменений, появляющаяся на изображении, может быть интерпретирована как смещение малых областей изображения. Разбив изображение на небольшие блоки (16х16 элементов) и определив их расположение в предыдущем кадре, можно для каждого блока найти набор параметров, показывающий направление и значение его смещения. Этот набор называют вектором движения, а всю операцию - предсказанием с компенсацией движения. По каналу связи передаются только вектор движения и относительно небольшая разность между текущим и предсказанным блоком. На этом этапе устраняется пространственная избыточность - разностный сигнал подвергается преобразованию из пространственной в частотную область, осуществляемому с помощью двумерного дискретно-косинусного преобразования (ДКП). ДКП преобразует блок изображения из фиксированного числа элементов в равное число коэффициентов. Это дает два преимущества. Во-первых, в частотной области энергия сигнала концентрируется в относительно узкой полосе частот (обычно на НЧ) и для передачи несущественных коэффициентов достаточно небольшого числа битов. Во-вторых, разложение в частотной области максимально отражает физиологические особенности зрения.

Следующий этап обработки заключается в адаптивном квантовании полученных коэффициентов. Набор коэффициентов каждого блока рассматривается как вектор, и процедура квантования производится над набором в целом (векторное квантование). Оценка показывает, что описанная процедура сжатия близка к теоретическому пределу сжатия информации по Шеннону.

Амплитудная избыточность исходного сигнала устраняется на этапе кодирования сообщения перед подачей его в канал связи. Не все значения вектора движения и коэффициентов блока равновероятны, поэтому применяется статистическое кодирование с переменной длиной кодового слова. Наиболее короткие слова присваиваются событиям с наибольшей вероятностью. Дополнительная компрессия достигается кодированием в виде самостоятельного символа групп нулей.Отличительной чертой стандартов MPEG1 и MPEG2 является их гибкость. Они могут работать с параметрами разложение изображения 525 строк при 30 кадрах в секунду и 625 строк при 25 кадрах в секунду, пригодны для форматов изображения 4:3, 16:9 и др., допускают усовершенствование кодера без изменений в уже остановленных декодерах.

Для спутниковою телевидения более перспективным, безусловно, является MPEG2, рассчитанный на обработку входного сигнала с чересстрочной разверткой и различными скоростями цифрового потока (4...10 Мбит/с и более), каждой из которых соответствует определенная разрешающая способность. По этому параметру в стандарте определены четыре уровня: низкий (на уровне бытового видеомагнитофона), основной (студийное качество), телевидение повышенной четкости с 1440 элементами на строку и полное ТВЧ с 1920 элементами. По сложности используемого алгоритма обработки стандарт содержит четыре профиля: простой - согласно вышеописанному алгоритму; основной - с добавлением двунаправленного предсказания; улучшенный основной - с улучшением либо отношения сигнал/шум, либо пространственного разрешения и перспективный - с возможностью одновременной обработки цветоразностных сигналов.

В качестве примера на рис. 8.4 приведена зависимость качества изображения от скорости цифрового потока (информационной) в режиме "основной уровень - основной профиль", наиболее употребительном сегодня в спутниковом телевидении.

Можно рассчитать, что в спутниковом канале с пропускной способностью 20...25 Мбит/г можно передать четыре-пять программ хорошего качества, соответствующего магистральным каналам подачи программ, или 10. .12 программ с качеством, соответствующим видеомагнитофону стандарта VHS.

Составной частью в стандарты МРЕG1 и МРЕG2 входят алгоритмы передачи звуковых сигналов с цифровой компрессией, позволяющие уменьшить скорость цифрового потока в шесть-восемь раз без субъективного ухудшения качества звучания. Один из широко используемых методов получил название MUSICAM.

Исходным сигналом является ИКМ последовательность, полученная стробированием исходного звукового сигнала с тактовой частотой 48 кГц и преобразованием в цифровую форму с точностью 16 бит/отсчет. Признано, что такой цифровой сигнал соответствует качеству звучания компакт-диска (CD-quality). Для эффективного использования спектра необходимо снизить максимальную скорость цифрового потока. Новая техника кодирования использует свойства человеческого восприятия звука, связанные со спектральным и временным маскированием. Шумы квантования динамически приспосабливаются к порогу маскирования, и в канале передаются только те детали звучания, которые могут быть восприняты слушателем. Эта идея реализуется в кодере. Здесь с помощью блока фильтров происходит разделение сигнала на 32 парциальных сигнала, которые квантуются в соответствии с управляющими сигналами психоакустической модели человеческого слуха, использующей оценку порога маскирования для формирования этих управляющих сигналов. На выходе кодера из парциальных отсчетов формируется набор кодовых слов, объединяемый далее в кадр заданной длительности. Выходная скорость кодера в зависимости от требований качества и числа программ в канале может составлять 32, 48, 56. 64, 80, 96, 112, 128, 160 или 192 Кбит/с на монопрограмму. Скорость 32 Кбит/с соответствует обычному речевому каналу, 48 Кбит/с - наземному AM вещанию. При скорости 256 Кбит/с на стереопару не только обеспечивается качество компакт-диска, но и имеется значительный запас на последующую обработку.

Системная часть стандарта MPEG2 описывает объединение в единый цифровой поток отдельных потоков изображения, звука, синхронизации, данных одной или нескольких программ. Для передачи в среде с помехами формируется "транспортный" поток, включающий средства для предотвращения ошибок и обнаружения утерянных пакетов. Он содержит пакеты фиксированной длины (188 байт), содержащие стартовый байт, префикс (3 байта) и область полезных данных.

Перед подачей в канал связи сигнал подвергается дополнительному помехоустойчивому кодированию и поступает на модулятор. Эти операции не входят в стандарт MPEG и в разных спутниковых системах могут выполняться различными способами, что лишает эти системы аппаратурной совместимости. Европейским странам удалось решить эту проблему, разработав на базе MPEG2 стандарт многопрограммного цифрового ТВ вещания DVB, нормирующий вес операции на передающей стороне вплоть до подачи сигнала на вход СВЧ передатчика.

В стандарте DVB применяется каскадное помехоустойчивое кодирование. Внешний код - укороченный код Рида-Соломона (204.188) с t=8, обеспечивающий "безошибочный" прием (вероятность ошибки на выходе менее 10-10) при вероятности ошибки на входе менее 10-3. Внутренний код - сверточный с относительной скоростью 1/2, 2/3, 3/4, 5/6 или 7/8 и длиной кодового ограничения К=7, декодирование осуществляется по алгоритму Витерби с мягким решением. Вид модуляции - четырехпозиционная ФМ.

На приемной стороне декодер осуществляет все вышеописанные операции в обратном порядке, восстанавливая на выходе изображение, весьма близкое к исходному.

Основной областью использования цифрового телевидения. как ожидается, станут системы непосредственного ТВ вещания в диапазоне 12 ГГц. В США уже функционирует первая такая система DirecTV / USSB, предоставляющая абонентам возможность приема более чем 170 ТВ программ. Планируется внедрение методов цифровой обработки в европейских спутниковых системах.

Телевидение высокой четкости

Под телевидением высокой четкости (ТВЧ) понимают передача изображения с числом строк, приблизительно вдвое превышающим тот показатель у существующих стандартов, и форматом кадра (отношение ширины кадра к его высоте) 16:9. Объем информации содержащийся в каждом кадре ТВЧ изображения, возрастает в пять-шесть раз по сравнению с обычным телевидением. На ТВЧ изображении отсутствуют дефекты, свойственные принятым сегодня стандартам ТВ вещания, - недостаточная разрешающая способность, заметность поднесущей, перекрестные искажения сигналов яркости и цветности, мерцание изображения из-за недостаточно высокой частоты кадров, дрожание строк и т.д. ТВЧ обеспечивает существенное повышение качества ТВ изображения, приближая его восприятие к зрительному восприятию естественных, натуральных сцен и сюжетов. Такое радикальное улучшение качества изображения не может быть достигнуто ни модификацией существующих стандартных систем цветного ТВ, ни ТВ системами повышенного качества.

В США, Японии, европейских странах в последние пять-семь лет ведутся многочисленные разработки новых ТВ стандартов с улучшенным качеством изображения. Разработаны совместимые системы телевидения повышенного качества (ТВПК), в которых устранены наиболее характерные искажения ТВ сигнала, несколько увеличена разрешающая способность, введен формат изображения 169 (стандарты МАС, PAL-плюс). Эти системы нельзя отнести к ТВЧ, так как параметры разложения изображения не изменяются.

Среди систем ТВЧ с временным разделением наиболее известна и одно время даже претендовала на роль мирового стандарта японская система MUSE (Multiple Sub-Nyquist Sampling Encoding -кодирование с многократной субдискретизацией), предназначенная для передачи сигналов ТВЧ по спутниковому каналу с полосой 27 (24) МГц. Передача сигналов изображения в спутниковом канале осуществляется с помощью ЧМ сигнала звукового сопровождения - методом четырехпозиционной ФМ.

Япония достаточно далеко продвинулась в деле внедрения ТВЧ. Разработано необходимое студийное оборудование, поступили в продажу ТВ приемники, ведутся регулярные передачи в стандарте MUSE через вещательный спутник BS-3.

Разработка стандарта ТВЧ в Европе проводилась с 1986 г. в рамках научно-технической программы "Эврика". Новый стандарт HD-МАС (High Definition МАС - МАК высокой четкости) основан на ранее разработанном D(D2)-МАС/packet и совместим с ним. Снижение роли стандартов МАС в спутниковом вещании ставит под сомнение и перспективы широкого внедрения HD-МАС.

В ближайшее время ожидается принятие национального стандарта ТВЧ в США, пригодного для использования, как в наземных, так и в спутниковых системах.

Принятие каждой группой стран своего собственного стандарта ТВЧ может затруднить международный ТВ обмен, как это произошло уже в прошлом со стандартами черно-белого ТВ и системами цветного телевидения. В последнее время под эгидой Международного союза электросвязи предпринимаются усилия по созданию единого мирового стандарта ТВЧ. Уже согласованы базовые параметры ТВЧ сигнала: формат изображения 16:9, колориметрические характеристики, световые параметры, пределы значений скорости передачи видеоданных 0,8...1,2 Гбит/с для чересстрочной развертки и 2...3 Гбит/с при прогрессивном разложении, число элементов в активной части строки и т.п.

Серьезной проблемой в ТВЧ вещании является поиск методов распределения сигналов. Существующие распределительные сети не располагают пропускной способностью, достаточной для передачи значительного числа высокоскоростных сигналов, поэтому на передающей стороне сигнал подвергают дополнительной обработке, имеющей целью сократить объем информации без заметного ухудшения качества изображения.

Разработанные в рамках стандарта MPEG-2 методы цифровой компрессии полностью применимы к ТВЧ и позволяют уже сегодня передать ТВЧ сигнал со скоростью цифрового потока 20…30 Мбит, что примерно соответствует пропускной способности спутникового ВЧ ствола с полосой пропускания 27... 36 МГц.

Засекречивание ТВ сигнала

Телевизионные сигналы со спутника в принципе могут быть приняты любым желающим в пределах обширной территории независимо от желания передающей стороны. Однако в некоторых случаях телекомпания - владелец программы заинтересована в предотвращении несанкционированного приема, например, при передаче программ платного телевидения, деловых телеконференций или для ограничения территории, на которой можно принимать данную программу по условиям авторского права. Наиболее широко применяемый метод ограничения доступа - засекречивание передаваемых программ таким образом, чтобы сделать прием невозможным без специального декодера, предоставляемого владельцем программы. На практике используется восемь систем кодирования для PAL/SECAM, четыре для NTSC и шесть для сигнала МАС.

Основные требования к системе засекречивания - она должна быть недорогой, надежной и "прозрачной". Первое требование очевидно и означает, что стоимость декодера не должна существенно влиять на стоимость всей приемной установки. Высокая надежность предполагает, что сигнал невозможно расшифровать простой переделкой приемника и требуется специальное устройство - декодер, который, по крайней мере, не может быть изготовлен в домашних условиях и содержит ключ или специальную карту, защищенные от копирования. Обычно приходится искать компромисс между надежностью системы засекречивания и ее стоимостью. Прозрачность системы означает, что качество сигнала после кодирования/декодирования не должно ухудшаться.

Простейший способ засекречивания - искажение синхросигнала так, что стандартный ТВ приемник не может восстановить нормальное изображение, оно появляется на экране в виде отдельных сегментов. Информация о синхросмеси передается в сигнале в скрытой форме и обнаруживается декодером, который восстанавливает стандартные синхроимпульсы. Более высокая надежность достигается добавлением инвертирования части сигнала, смещением его уровня. Еще более сложный путь - сдвиг во времени отдельных строк изображения, или рассечение строк и перестановка местами рассеченных частей, или перестановка местами строк.

В одной из первых использовавшихся в Европе систем вместо строчного синхроимпульса подставлялся пакет синусоидальных колебаний с частотой 2,5 МГц, применялись также различные варианты инвертирования изображения. Разновидность этого метода под названием Irdeto/Luscrypt используется при кодировании программы RTL-4 на спутнике Astra. Схожий результат получается при передаче цифровых звуковых сигналов в интервале обратного хода луча, используемой Европейским вещательным союзом в системе "Евровидение". Цифровой пакет нарушает структуру строчного синхроимпульса и сбивает работу амплитудного селектора, поэтому на приеме необходимо специальное устройство регенерации синхросмеси.

Системы со смещением уровня отдельных компонентов видеосигнала оказались не очень надежными и постепенно от них отказались в пользу более совершенных методов со смещением во времени отдельных элементов изображения, которые обеспечивают значительно более высокую надежность. Среди систем, позволяющих распознать изображение, но затрудняющих его просмотр наиболее известна Discret, где изображение каждой строки задерживается на 0, 1 или 2 мкс с помощью дополнительных аналоговых линий задержки, подключаемых к каналу на период строки по псевдослучайному закону. На приемной стороне закон чередования восстанавливается по кодовому слову, передаваемому совместно с сигналом и расшифровываемому декодером.

В системе Videocrypt заложен более сложный принцип перемещения частей строк. Кодер рассекает каждую строку в одной из 256 точек, выбранных по псевдослучайному закону, и меняет местами части рассеченной строки. При этом полностью разрушается структура изображения по вертикали, но частично сохраняется горизонтальная структура - титры, надписи, меню программ Информацию, необходимую для восстановления изображения, декодер получает из двух источников: один ключ передается в закодированном виде в интервале кадрового гасящего импульса, другой распространяется в виде специальной абонентской карточки, рассылаемой подписчикам каждые три-четыре месяца. Сегодня Videocrypt - наиболее распространенный метод кодирования ТВ сигналов, передаваемых в системе PAL.

Более сложная система Nagravision требует на приеме памяти объемом в полукадр. Изображение на передающей стороне записывается в буфер и передается построчно, но с "перемешиванием" порядка строк по псевдослучайному закону. На приеме операции производятся в обратном порядке. В системе Nagravision вертикальная структура изображения не нарушается, но любая горизонтальная полоска как бы размазывается по всему экрану. Эта система выбрана в качестве основной испанскими вещательными компаниями.

Более простая разновидность описанной системы Syster требует памяти только на часть поля и поэтому более экономична в реализации. Ее использует крупнейшая вещательная компания Франции Canal Plus для передачи программ через спутник Те1еcom НВ, а также популярный российский пакет спутниковых программ НТВ-Плюс.

Все применяемые на североамериканском континенте системы засекречивания имеют общую особенность, повышающую их надежность: абонентский декодер работает в интерактивном режиме и активизируется только когда, когда получает от центра управления соответствующую команду. В наиболее распространенной системе Videocipher II, разработанной компанией General Instruments из видеосигнала полностью удаляются обычные сигналы синхронизации, полярность сигнала инвертируется, а сигналы цветового опознавания переносятся на нестандартную частоту.. Обычный ТВ приемник не может принять такой сигнал, и требуется установка специального декодера. Каждому декодеру присвоен индивидуальный номер н при включении он посылает свой номер по телефонным линиям в центр управления компании General Instruments, где он опознается и по спутниковому каналу подается специальное сообщение санкционирующее прием и содержащее инструкции по декодированию. Таким способом практически исключается использование "пиратских" декодеров.

Сигналы двух звуковых каналов в системе Videocipher II передаются в цифровом виде совместно с сигналами синхронизации и другой служебной информацией в интервале строчного гасящего импульса. Аналого-цифровое преобразование осуществляется с точностью 15 бит/отсчет, что обеспечивает динамический диапазон звучания более 75 дБ (теоретически 92 дБ).

Для стандартов семейства МАС разработан метод засекречивания Eurocrypt, базирующийся, как и Videocrypt на рассечении и перестановке частей строки. Информация о координатах рассечения передается в строке 625 в виде кодового числа. Для его расшифровки на приеме используется абонентская карточка с вмонтированным в нее кристаллом памяти, в которой записаны ключи к коду и инструкции по дешифровке. Eurocrypt применяется более чем в 80% всех ТВ каналов, использующих сигналы D2- и D2-МАС.

Засекречивание сигналов в цифровом телевидении не представляет особой проблемы, здесь может широко использоваться весь арсенал методов, разработанных ранее для цифровой радиосвязи. В одной из практически реализованных систем цифровой поток зашифровывается с помощью передаваемого вместе с сигналом кодового слова длиной 56 бит, генерируемого псевдослучайным образом и сменяемого с интервалом от долей до нескольких секунд Кодовое слово в свою очередь зашифровывается с помощью ключа, обновляемого раз в несколько недель, а а тот последний рассылается абонентам по спутниковому каналу также в засекреченном виде Алгоритм декодирования записывается в кристалле микропроцессора, помещаемом либо в декодере, либо в абонентской карточке и работающем только при наличии ключа Степень секретности такого кода весьма высока.

Передача сигналов спутникового звукового вещания

В предыдущих параграфах данной главы рассмотрены различные способы передачи ЗВУКОВЫХ сигналов в спутниковом канате совместно с сигналом изображения. В некоторых случаях ставится задача передачи большого числа звуковых программ не в дополнении к сигналам телевидения, а взамен их. Расчеты и эксперименты показывают, что при передаче методом двойной ЧМ на поднесущих размещенных равномерно в полосе видеоспектра. удается передать не более восьмидесяти монофонических программ. Основным препятствием являются возникающие из-за нелинейных эффектов внятные переходные помехи, на которые в звуковом вещании установлены особенно жесткие нормы.

В другом варианте аналоговой передачи ствол ИСЗ уплотняется несколькими сигналами звукового вещания, каждый из которых передается на отдельной несущей с помощью ЧМ (принцип "один канал на одной несущей", широко применяемый при передаче телефонии). И в этом случае пропускная способность ствола не превышает восьмидесяти звуковых программ первого класса качества, что экономически не эффективно.

Существенно лучшие результаты достигаются при передаче звуковых сигналов в цифровой форме с временным разделением. На этом принципе основана работа аппаратуры "Орбита-РВ". предназначенной для подачи по спутниковым каналам звуковых программ к региональным центрам вещания. Сигналы звукового вещания преобразуются на входе передающего комплекса "Орбита-РВ" в дискретную форму, используется нелинейное мгновенное компандирование, так что в стандартном цифровом потоке 2048 Кбит/с удается передать шесть каналов высшего класса качества, либо десять каналов первого, либо 15 каналов второго класса. Всего для каналов звукового вещания выделяется два потока по 2048 Кбит/с, они подвергаются помехоустойчивому кодированию с относительной скоростью 3/4, сюда добавляются сигналы изображений газетных полос, общий поток со скоростью примерно 19 Мбит/с поступает для дальнейшей обработки.

Аппаратура "Орбита-РВ" при работе через ИСЗ "Горизонт" требовала приемной антенны диаметром 12м, т.е. могла работать только в составе станции "Орбита", что значительно ограничивало ее применение. Существенно большей гибкостью обладает вводимая в ближайшее время цифровая система звукового вещания с многостанционным доступом "Рабита". Она позволяет организовать в одном стволе четыре-пять многопрограммных (скорость передачи 2048 Кбит/с) и 10... 15 однопрограммных каналов (для трансляции региональных программ). В системе используется описанный выше метод цифровой передачи MUSICAM, в оборудовании применены стандартизованные БИС высокой степени интеграции.

Приемные станции системы имеют антенну диаметров 2,5...3,5 м, региональные передающие станции - антенну диаметром 3.5...4,5 м с передатчиком мощностью 50...100 Вт.

Появление в Европе мощных спутников непосредственного ТВ вещания позволило решить задачу индивидуального приема сигналов звукового вещания. В разработанной в ФРГ системе DSR (Digital Satellite Radio) в стволе с полосой 27 МГц передается 16 стереопрограмм высшего класса качества. Сигналы отдельных каналов преобразуются в цифровую форму, объединяются в единый цифровой поток, вводится эффективная защита от ошибок, линейная скорость передачи в канале составляет 20,48 МГц/с. Прием программ с хорошим качеством обеспечивается при отношении несущая/шум 14 дБ. До недавнего времени такая система работала через спутник TVsat 2, в настоящий момент она использует один из стволов ИСЗ DFS/Kopernicus, схожая система эксплуатируется в одном из стволов французского ИСЗ Теlесоm II.

Неоднократно рассматривался вопрос о возможности спутникового звукового вещания для непосредственного приема на простые приемники - стационарные, возимые или переносимые Экономически приемлемое решение было найдено только после появления эффективных алгоритмов цифровой компрессии. В разработанной европейскими странами системе цифрового звукового вещания сигналы отдельных каналов обрабатываются по стандарту MUSICAM, затем они объединяются в общий цифровой поток, сюда добавляются служебная информация, биты помехоустойчивого кодирования (относительная скорость от 1/3 до 3/4), суммарный цифровой поток имеет скорость 2,3 Мбит/с, он скремблируется и в виде пакетов длительностью 23 мс поступает на вход ФМ модулятора.

Серьезной проблемой вещания при приеме на недорогие приемники с ненаправленными или слабонаправленными антеннами является многолучевость распространения, приводящая к глубоким замираниям сигнала на входе приемника. В описываемой системе компенсация многолучевого распространения достигается разделением цифрового потока на большое количество низко корсетных потоков модулирующих индивидуальные несущие. Длительность символов при этом оказывается больше, чем задержка распространения в канале, межсимвольная интерференция отсутствует. Любой эхосигнал длительностью короче защитного интервала также не вызовет межсимвольной интерференции

На территории России можно использовать полосы 1452...1492 МГц (выделена для наземного и спутникового вещания) и 2535...2655 МГц (только для спутникового вещания). Описанный метод позволяет в полосе 1,75 МГц передавать до шести стереопрограмм. Из-за слабой направленности приемных антенн общая полоса частот должна быть распределена в каждом регионе на плановой основе, чтобы набежать взаимных помех. Расчеты показывают, что в Европе каждой стране удается выделить не менее двух блоков по 1,75 МГц.
Источник не указан

Категория: Статьи » Спутниковое телевидение

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.